b-رنگ آمیزی گراف ها

پایان نامه
چکیده

چکیده ی فارسی یک رنگ آمیزی رأسی سره از گراف ‎g‎ را یک bرنگ آمیزی از گراف ‎ g‎ می نامند هرگاه هر کلاس رنگی دارای رأسی باشد که این رأس در تمام کلاس های رنگی دیگر همسایه داشته باشد. هر رنگ آمیزی از گراف ‎g‎ با ‎chi(g)‎ رنگ، یک bرنگ آمیزی از‎ g‎ است. به بزرگ ترین عدد طبیعی‎ k‎ که یک bرنگ آمیزی از گراف‎ g‎ با‎ k رنگ وجود داشته باشد، عدد b رنگی ‎گراف‎g‎ می گویند و آن را با phi (g) نمایش می دهند. گراف‎g را b‎ پیوسته گویند هرگاه برای هر عدد طبیعی ‎k‎ که ‎chi (g) ? k ? phi (g)، یک b رنگ آمیزی از گراف ‎g ‎با ‎k ‎ رنگ وجود داشته باشد. در این پایان نامه، ابتدا ارتباطی بین همریختی های گراف ها و b‎ ‎ رنگ آمیزی های گراف ها می یابیم و با استفاده از این ارتباط، نشان می دهیم که برای هر عدد طبیعی ‎k‎، گراف کنسر‎kg(2k+1,k)‎، b‎ پیوسته ‎است. سپس به بررسی عدد b رنگی گراف های dمنتظمی که دور به طول ‎4‎ ندارند می پردازیم. نشان می دهیم که برای هر گراف dمنتظم‎ g‎ که دور به طول‎ 4 نداشته باشد، phi(g) ? lfloorfrac{d+3}{2} floor. همچنین نشان می دهیم که اگرg‎ یک گراف d منتظم باشد که دور به طول‎4‎ نداشته باشد و ‎diam(g) ? 6‎، آن گاه phi(g)=d+1‎ . ثابت می کنیم برای هر گراف d منتظم ‎g‎ که دور به طول ‎4‎ ندارد و ‎kappa(g) ? frac{d+1}{2}‎، رابطه ی ‎varphi(g)=d+1‎ برقرار است، که ‎kappa(g) ‎ بیانگر همبندی رأسی گراف ‎g‎ است. همچنین نشان می دهیم که هر گراف d منتظم که ‎ c_{4}‎ را به عنوان زیرگراف در بر نداشته باشد و فراهمبند یالی نیز نباشد، دارای عدد b رنگی‎d+1‎ است. یک رنگ آمیزی رأسی سره از گراف ‎g‎ را یک رنگ آمیزی برگ ریزان از گراف ‎g‎ می نامند هرگاه هر رأس، تمام رنگ ها را در همسایگی بسته ی خود ببیند. هر رنگ آمیزی برگ ریزان، یک bرنگ آمیزی است. در انتها، رنگ آمیزی های برگ ریزان رده های خاصی از گراف ها را بررسی خواهیم کرد. کلمات کلیدی : bرنگ آمیزی، b‎ پیوسته، همریختی نیمه-موضعی-پوشا، رنگ آمیزی برگ ریزان.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

b-رنگ آمیزی گراف ها

گراف کنسر گرافی است که راس هایش تمام زیر مجموعه های k عضوی از مجموعه 1 تا n است. که b-رنگ آمیزی گراف کنسر را بحث کرده ایم. همچنین b-رنگ آمیزی گراف منتظم از درجه d را بررسی می کنیم. بزرگترین افراز را برای چنین گرافی با درجه کمتر از شش به دست آورده ایم. ازطرفی گراف به دست آمده از حاصل ضرب دکارتی دو گراف را b-رنگ آمیزی کرده ایم . برای چنین رنگ آمیزی از مستطیل لاتین استفاده می کنیم.

بازی شلیک چیپ و b-رنگ آمیزی گراف ها

این پایان نامه از دو قسمت تشکیل شده است. در قسمت اول به بررسی یک بازی یا فرایند روی یک گراف به نام بازی شلیک چیپ می پردازیم.بازی شلیک چیپ یک بازی یک نفره با یک فرایند انتشار روی یک گراف است. در این قسمت بازی شلیک چیپ روی گراف های غیرجهت دار و جهت دار، هم چنین نسخه تغییر یافته ای از این بازی به نام بازی دلار را مورد تحلیل و بررسی جامع قرار می دهیم. قسمت دوم این پایان نامه به پاسخ به برخی از سوال...

15 صفحه اول

رنگ آمیزی پویای گراف ها

در این پایانامه سعی می کنیم به ارتباط بین عدد رنگی و عدد رنگی پویای گراف ها در حالت خاص بپردازیم, علاوه بر آن عدد رنگی پویای انتخابی(لیستی) را معرفی کرده و بعضی از نتایج آن را بیان می کنیم.

رنگ آمیزی پویای گراف ها

یک k رنگ آمیزی گراف g را رنگ آمیزی پویا می نامند, اگر در همسایه های هر رأس آن با حداقل درجه دو, حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k را به طوری کهg دارای یک k-رنگ آمیزی پویا باشد, عدد رنگی پویای g می نامند. در این پایان نامه به بررسی مفهوم رنگ آمیزی پویا, عدد رنگی پویای برخی گراف های خاص و کران بالای عدد رنگی پویا که در مقاله lai, h. j.,b. montgomery, h. poon, (2003), upper bounds ...

15 صفحه اول

رنگ آمیزی وقوع گراف ها

فرض کنیم (g=(v,eیک گراف ساده با مجموعه رئوس (v(gو مجموعه یال های (e(gباشد. vرارأسی دلخواه در gدر نظر میگیریم که واقع بر یال eباشد. زوج (v,e)را یک وقوع در گراف می نامیم. مجموعه ی همه ی وقوع ها در گراف را با(i(g نمایش می دهیم. دو وقوع مجزای (v,e) و (w,f)را در گراف مجاور گوییم هرگاه یکی از حالات زیر رخ دهد: الف) v=w: ب)e=f: ج)یال vw برابر با e یا f باشد. رنگ آمیزی وقوع در گراف را نگاشتی از مجموع...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه تحصیلات تکمیلی علوم پایه زنجان - دانشکده ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023